Selasa, 25 Oktober 2011

sistem pernafasan

2.1 Pengertian dan Fungsi Pernafasan

a. Pengertian respirasi

Pertukaran gas O2 dan CO2 dalam tubuh makhluk hidup disebut pernapasan atau respirasi. O2 dapat keluar masuk jaringan melalui difusi. Pada dasarnya metabolisme yang normal dalam sel-sel makhluk hidup memerlukan oksigen dan karbondioksida. Pada hewan vertebrata terlalu besar untuk dapat terjadinya interaksi secara langsung antara masing-masing sel tubuh dengan lingkungan luar tubuhnya. Untuk itu organ-organ tertentu yang bergabung dalam sistem pernapasan dikhususkan untuk melakukan pertukaran gas-gas pernapasan bagi keperluan seluruh tubuhnya. Ada dua tahap pernapasan, tahap pertama oksigen masuk ke dalam dan pengeluaran karbondioksida ke luar tubuh melalui organ-organ pernapasan disebut respirasi eksternal, dan pengangkutan gas-gas pernapasan dari organ-organ pernapasan ke jaringam tubuh atau sebaliknya dilakukan oleh sistem sirkulasi. Tahap kedua adalah pertukaran O2 dari cairan tubuh (darah) dengan CO2 dari sel-sel dalam jaringan, disebut respirasi internal. Difusi gas-gas pernapasan antara lingkungan dengan pembuluh darah yang terdapat di bawah pembuluh respiratoris dapat terjadi jika permukaan tempat terjadinya pertukaran gas harus cukup luas dan tipis, selalu basah dan permeabel terbadap gas-gas pernapasan, dan terdapat perbedaan konsentrasi gas-gas pernapasan antara medium dan di luar darah.

b. Fungsi Respirasi

Jika melihat dari sistemnya fungsi respirasi adalah menyediakan oksigen untuk darah dan membuang karbondioksida. Sistem respirasi terdiri atas paru-paru dan sistem saluran yang menghubungkan jaringan paru-paru dengan lingkungan luar. Sistem respirasi di bagi menjadi dua, yaitu bagian kondusi yang terdiri atas rongga hidung, nesofaring, laring, trakhea, bronki, dan bronkeolus. Dan bagian respirasinya terdiri atas alveoli dan struktur yang berhubungan. Pertukaran gas antara udara dan darah hanya terjadi dalam alveoli (berbentuk seperti kantung khusus yang membentuk sebagian besar paru-paru). Adapun fungsi dari bagian kondusi adalah menyediakan saluran di mana udara dapat mengalir ke dan dari paru-paru, memelihara udara yang diinspirasi. Untuk melaksanakan fungsi tersebut, masing-masing sub divisi bagian kondusi memperlihatkan beberapa gambaran struktural yang sama satu sama lain. Agar suplai udara yang tidak terputus, terdapat gabungan-gabungan rawan, serabut-serabut elastin, dan otot polos yang memperlihatkan struktur penyokong yang keras dan kaku bagi organ-organ kondusi serta memerlukan fleksibilitas dan ekstenbilitas. Pada rawan terutama hialin dan adanya sedikit elastin yang ditemukan pada pinggir lamina propria (menunjukkan berbagai bentuk mulai dari lempeng-lempeng yang tidak teratur sampai yang berbentuk cincin lengkap). Rawan ini umumnya berperan sebagai penyokong dinding bagian kondusi, mencegah kolaps lumen sehingga udara dapat masuk ke paru-paru secara terus-menerus.

Serabut-serabut elastin yang banyak dapat memberikan fleksibilitas struktur dan memungkinkan organ kembali ke bentuk semula setelah meregang. Serabut-serabut itu ditemukan dalam lamina propria, terutama yang terletak longitudinal. Konsentrasi serabut-serabut elastin berbanding terbalik denagn garis tengah bagian kondusi (bronkiolus yang terkecil mendapt proporsi serabut yang terbanyak). Berkas-berkas otot polos terdapat di trakhea hingga duktus alveolaris (bagian respirasi). Kontraksi otot polos mengurangi garis tengah bagian kondusi dan mampu mengatur aliran udara selama inspirasi dan ekspirasi. Pemeliharaan udara merupakan fungsi utama pada bagian kondusi. Sebelum udara masuk paru-paru, udara yang diinspirasi dibersihkan, dibasahi, dan dihangatkan. Untuk melakukan fungsi ini mukosa bagian kondusi dibatasi oleh epitel respirasi khusus dan kelenjar serosa dan mukosa yang banyak, serta kaya akan jarinagn vaskuler dalm lamina proprianya. Sebagian besar bagian kondusi dibatasi oleh epitel bertingkat toraks bersilia yang mengandung banyak sel goblet. Pada cabang-cabang bronkus, sel-sel epitel ini mengalami perubahan menjadi epitel pipih selapis. Ketika bronkus membelah menjadi bronkiolus epitel berubah menjadi selapis kubus. Jumlah sel goblet mulai berkurang pada bronkus yang lebih kecil dan sam sekali tidak ada pada epitel bronkiolus terminalis. Sel-sel bersilia yang menyertai sel-sel goblet tetap ada pada bronkiolus halus namun sudah tidak mengandung sel-sel goblet lagi. Sel-sel bersilia tersebut berperanan mencegah mukus yang tertimbun dalam bagian respirasi. Mukus yang menangkap partikel dan mengabsorbsi gas yang larut dalm air didorong terus menerus oleh silia ke arah faring. Pergerakan lapisan mukosa ditimbulkan dan diatur oleh aliran sekresi serosa. Selain untuk membersihkan kotoran, lapisn mukosa juga berperan untuk mebasahi udara inspirasi.

2.2 Struktur Histologi dari Organ dan Saluran Pernafasan

Sistem pernafasan tersusun atas organ pernafasan yang diawali dengan saluran pernafasan yang terdiri atas rongga hidung, faring, laring, trakea, bronkus serta alveolus, pembuluh darah paru-paru, pembuluh limfe paru-paru, dan pleura yang terhubung langsung dengan paru-paru.

a) Rongga Hidung

Udara masuk dan keluar melalui rongga hidung. Dengan udara luar dihubungkan oleh lubang hidung luar (nares eksternal), dengan faring dihubungkan oleh lubang hidung dalam (nares internal/khoane). Rongga hidung dipisahkan oleh suatu sekat yang disebut septum basal, menjadi bagian kiri dan kanan sedangkan dari rongga mulut dibatasi oleh maksila dan tulang langit-langit mulut. Rongga hidung dilapisi dengan epitel silindris bersilia yang mengandung banyak sel goblet penghasil lendir. Rongga hidung dilengkapi dengan rambut hidung yang berfungsi sebagai penghalau benda-benda asing atau debu yang ikut masuk saat menghirup udara. Saat udara masuk ke hidung, bulu-bulu hidung berperan menyaring partikel-partikel debu yang kasar dan zat-zat lain. Mukus ini, dalam hubungannya dengan sekresi serosa, juga berperan untuk membasahi udara yang masuk dan melindungi pembatas alveolar halus dari pengeringan. Selain itu udara juga dihangatkan oleh jaringan vaskuler superfisial.

b) Laring

Laring merupakan tabung ireguler yang menghubungkan faring dengan trakea. Dalam lamina propia terdapat sejumlah rawan laring, struktur yang paling rumit pada jalan pernapasan. Rawan-rawan yang lebih besar (tiroid, krikoid, dan sebagian besar aritenoid) adalah rawan hialin, dan pada orang tua sebagian dapat mengalami kalsifikasi. Rawan yang lebih kecil (epiglottis, cuneiformis, kornikulatum, dan ujung aritenoid) adalah rawan elastin. Ligamentum-ligamentum menghubungkan rawan-rawan tersebut satu sama lain, dan sebagian besar bersambung dengan otot-otot intrinsic larynx, di mana mereka sendiri tidak bersambungan karena mereka adalah otot lurik. Selain berperanan sebagai penyokong (mempertahankan agar jalan udara tetap terbuka) rawan-rawan ini berperanan sebagai katup untuk mencegah makanan atau cairan yang ditelan masuk trakea. Mereka juga berperanan dalam pembentukan irama fonasi.

Epiglotis, yang menonjol dari pinggir laring, meluas ke faring dan karena itu mempunyai permukaan yang menghadap ke lidah dan laring. Seluruh permukaan yang menghadap ke lidah dan bagian permukaan apikal yang menghadap ke laring diliputi oleh epitel berlapis gepeng. Ke arah basis epiglottis pada permukaan yang menghadap laring, epitel mengalami perubahan menjadi epitel bertingkat toraks bersilia. Kelenjar campur mukosa dan serosa terutama terdapat di bawah epitel toraks, bebas menyebar ke dalam, yang menimbulkan bercak pada rawan elastin yang berdekatan. Di bawah epiglottis, mukosa membentuk dua pasang lipatan yang meluas ke dalam lumen larynx. Pasangan yang di atas merupakan pita suara palsu (atau lipatan vestibular), dan mereka mempunyai epitel respirasi yang di bawahnya terletak sejumlah kelenjar seromukosa dalam lamina proprianya. Pasangan yang bawah merupakan lipatan yang merupakan pita suara asli. Di dalam pita suara, yang diliputi oleh epitel berlapis gepeng, terdapat berkas-berkas besar sejajar dari selaput elastin yang merupakan ligamentum vocale. Sejajar dengan ligamentum terdpat berkas-berkas otot lurik, m.vocalis, yang mengatur regangan pita dan ligamentum dan akibatnya, waktu udara didorong melalui pita-pita menimbulkan suatu suara dengan tonus yang tidak sama.

c) Trakea

Trakea merupakan tabung berdinding tipis yang terletak dari basis larynx (rawan krikoid)ke tempat di mana trakea bercabang menjadi 2 bronkus primer. Trakea dibatasi oleh mukosa respirasi. Di dalam lamina propria terdapat 16-20 rawan hialin berbentuk seperti huruf C yang berperanan mempertahankan lumen trake agar tetap terbuka. Ligamentum fibroelastindan berkas-berkas otot polos (m. trachealis) melekat pada perikondrium dan menghubungkan ujung-ujung bebas rawan yang berbentuk huruf C tersebut. Ligamentum mencegah peregangan lumen yang berlebihan, sementara itu otot memungkinkan rawan saling berdekatan. Kontraksi otot disertai dengan penyempitan lumen trakea dan digunakan untuk respon batuk. Setelah kontraksi, akibat penyempitan lumen trakea akan menambah kecepatan udara ekspirasi, yang membantu membersihkan jalan udara.

d) Bronkus T

trakea membelah menjadi 2 bronkus utama yang masuk ke dalam paru-paru pada tiap hilus. Selain itu, pada tiap-tiap hilus arteòh dan vena seòõ` pembuluh limfe masuk dan meninggalkan paru-paru. Struktur ini dikelilingi oleh jaringan penyambung padat dan membentuk akar paru-paru. Setelah masuk ke dalam paru-paru, bronkus primer menuju ke arah bawah dan luar untuk membentuk 3 bronkus pada paru-paru kanan 2 bronkus pada paru-paru kiri. Bronkus lobaris bercabang-cabang membentuk bronkus yang lebih kecil yang di sebut Bronkiolus. Masing-masing bronkiolus masuk ke lobus paru-paru yang membentuk 5-7 bronkiolus terminalis.

Lobulus paru-paru berbentuk piramid dengan apeks yang mengarah ke arah permukaan paru-paru. Tiap lobulus dibatasi oleh septum jaringan penyambung tipis yang terlihat pada fetus. Bronkiolus tidak mempunyai kelenjar pada mukosanya tetapi hanya ditunjukkan oleh adanya sel-sel goblet yang tersebar dalam epitel permulaan(bagian luar). Pada bronkiolus yang lebih besar, epitelnya bersilia dan kekomplekannya berkurang sehingga menjadi epitel kubis bersilia pada bronkiolus terminalis. Selain sel-sel bersilia, bronkiolus terminal juga mempunyai sel-sel clara yang permukaan apikalnya berbentuk seperti kubah yang menonjol ke arah lumen. Sel-sel clara pada manusia merupakan sel-sel sekretori. Bronkiolus respiratorius dibatasi oleh epitel kubis bersilia, tetapi pada tepi lubang alveolaris, epitel bronkiolus menuju epitel pembatas alveolus. Epitel bronkiolus terdiri atas epitel kubis bersilia tetapi pada bagian yang lebih distal, silia mungkin tidak ada. Bronkiolus respiratorius digunakan untukmenggambarkan fungsi pada segmen jalannya pernapasan.

Duktus alveolaris dan alveoli dibatasi oleh sel-sel epitel selapis gepeng yang sangat tipis. Dalam lamina propria, di sekitar tepi alveoli merupakan jala sel otot polos yang saling berhubungan. Duktus alveolaris bermuara ke dalam atria, ruang yang menghubungkan antara multilokularis alveoli dengan dua atau lebih alveolaris pada setiap atrium. Serabut-aerabut elastin memungkinkan alveoli mengembang pada waktu inspirasi dan secara pasif berkontraksi pada saat ekspirasi. Kolagen berperan sebagai penyokong yang mencegah peregangan yang berlebihan dan sebagai pencegah kerusakan-kerusakan kapiler halus dan septa alveoli yang tipis.

e) Alveolus

Alveoli ( jamak:alveolus ) merupakan evaginasi kecil seperti kantung dari bronkiolus respiratorius, duktus alveolaris , dan sakus alveolaris. Alveoli merupakan bagian terminal cabang-cabang bronkus dan bertanggungjawab akan struktur paru-paru yang menyerupai busa. Secara struktural alveoli menyerupai kantung kecil yang terbuka pada salah satu sisinya, mirip sarang tawon. Dalam struktur yang menyerupai mangkok ini, oksigen dan CO2 mengadakan pertukaran antara udara dan darah. Dinding alveoli dikhususkan untuk menyelenggarakan difusi antar lingkungan eksterna dan interna. Umumnya, tiap-tiap dinding dari 2 alveoli yang berdekatan bersatu dan dinamakan septum atau dinding interalveolaris. Septum Alveolaris terdiri atas dua lapisan epitel pipih tipis yang diantaranya terdapat kapiler-kapiler, jaringan penyambung merupakan intertisial. Di dalam interstisial septa alveolaris paling kaya akan jaringan kapiler dalam tubuh.

Untuk mengurang jarak penghalang udara- darah, ke dua lamina basalis umumnya bersatu menjadi satu lamina basalis yang tipis. Tebal keempat lapisan m. Dalam septa interalveolaris,mini berkisar dari 0,2 sampai 5 kapiler-kapiler pulmonalis yang beranastomosis disokong oleh jalian serabut kolagen dan elastin. Serabut-serabut ini, yang dirancang agar memungkinkan pengembangan dan kontraksi dinding alveoli, merupakan struktur primer penyokong alveoli. Dalam Interstitial septa juga ditemukan leukosit, makrofag, dan fibroblast. Oksigen udara Alveoli masuk ke dalam kapiler darah melalui membran yang membatasi udara dan alveoli, CO2 berdifusi dengan arah yang berlawanan. Pelepasan CO2 dari H2CO3 dikatalisis oleh enzim anhidrase karbonat yang terdapat dalam sel-sel darah merah. Oleh karena itu, tidaklah mengherankan bila eritrosit mengandung enzim tersebut lebih banyak dibandingkan sel-sel lain di tubuh. Paru-paru kira-kira mengandung 300 juta alveoli, jadi sangat menambah permukaan pertukaran interna, yang telah dihitung kira-kira 70-80 m2.

Sel endotel kapiler sangat tipis sekali dan mempunyai inti yang lebih kecil, tampak lebih panjang daripada inti sel-sel pembatas, seringkali mereka bersatu. Endotel yang membatasi kapiler darah adalah kontinyu dan tidak fenestrata. Secara sitologis, ini dan organel-organel sel yang lain berkelompok sehingga daerah-daerah lain sel menjadi sangat tipis sekali dalam rangka menambah efisiensi pertukaran gas. Gambaran yang paling nyata dalam sitoplasma pada bagian sel yang tipis adalah banyak mengandung vesikel-vesikel pinositik. Sel pipih Alveoler, disebut juga sel tipe I merupakan sel yang sangat tipis yang membatasi permukaan sel alveoli. Sel ini sangat tipis, kadang-kadang hanya bergaris tengah 25 nm, sehingga dibutuhkan analisis mikroskop elektron untuk membuktikan bahwa semua kapiler diliputi oleh epitel pembatas . Untuk mengurangi tebal penghalang udara-darah, inti dan organel-organel sel pipih berkelompok sedangkan sekitar inti sitoplasmanya menyebar, membentuk lapisan pembatas yang tipis. Sitoplasma pada bagian tipis terutama mengandung vesikel pinositotik, yang memegang peranan penting dalam turnover surfaktan (di jelaskan di bawah) dan pembuangan partikel-partikel kecil yang merupakan kontaminan dari permukaan luar. Secara sitologis, sel epitel pipih dan sel endotel kapiler satu sama lain merupakan bayangan cermin.

Selain desmosom, yang menghubungkan sel-sel yang berdekatan, semua sel epitel mempunyai hubungan okludens yang berperanan mencegah kebocoran cairan jaringan ke dalam celah udara alveoler. Peranan utama sel ini adalah menyediakan penghalang yang tipis yang sangat permeabel bagi gas-gas. Sel Alveolar besar, disebut sebagai sel tipe II juga dinamakan sel septal, ditemukan terselip diantara sel-sel epitel pipih, dimana mereka mempunyai hubungan okludens dan desmosom. Sel Alveolar besar merupakan sel yang secara kasar kubis yang biasanya ditemukan dalam kelompokan 2 atau 3 sel sepanjang permukaan alveoli pada tempat-tempat dimana dinding alveoli bersatu dan membentuk sudut. Sel-sel ini, yang terletak pada lamina basalis, merupakan bagian dari epitel, karena mempunyai asal yang sama seperti sel epitel pipih yang membatasi dinding alveoli. Secara sitologis, sel-sel ini mirip jenis sel sekretoris.

Mereka mempunyai mitokondria, retikulum endoplasma granuler, aparatus golgi yang berkembang baik, dan mikrovili pada permukaan bebasnya. Pada potongan histologis, mereka menunjukkan sifat sitoplasma yang vesikuler atau berbusa. Vakuola-vakuola disebabkan karena adanya badan-badan multilameler atau sitosom yang terawetkan dan terdapat pada jaringan yang disiapkan untuk mikroskop elektron. Badan multilamelar, yang m, mengandung granula-granula yangmbergaris tengah sekitar 0,2 mempunyai lamel-lamel sejajar konsentrik yang dibatasi oleh suatu unit membran. Pemeriksaan histokimia menunjukkan bahwa badan-badan ini yang mengandung fosfolipid, mukosakarida, dan protein, secara kontinyu disintesis dan dikeluarkan pada permukaan apikal sel. Badan multilameler, yang dikeluarkan satu persatu, menimbulkan suatu zat yang menyebar diatas permukaan alveolir, membentuk selubung ekstra sel, surfakatan, yang mempunyai aktivitas permukaan yang unik. Prose sekresi sel tipe III telah dijelaskan dengan bantuan mikroskop elektron dan radioautografi.

Lapisan surfaktan terdiri atas hipofase proteinaceous cair yang diliputi oleh selaput monomolekuler fosfolipid, terutama terdiri atas dipalmitoil lesitin. Surfaktan berperan dalam fungsi utama ekonomi paru-paru. Surfaktan terutama membantu dalam mengurangi regangan permukan sel pipih alveolar. Tanpa Surfaktan, sel-sel yang sangat tipis ini cenderung akan membulat, suatu fenomena umum yang diperlihatkan akibat kebutuhan untuk mengurangi energi yang dikeluarkan untuk mempertahankan permukaan yang lebih luas, yang terdapat pada sel-sel yang tipis. Pengurangan regangan permukaan, berarti lebih sedikit tenaga inspirasi yang dibutuhkan oleh alveoli yang mengembang, jadi mengurangi kerja pernapasan. Pada perkembangan fetus, surfaktan timbul pada minggu terakhir kehamilan dan bersamaan dengan tinbulnya badan multilameler dalam sel alveoli besar. Pada kelahiaran premetur, bayi sering menunjukkan kesukaran pernapasan yang mengakibatkan kesulitan pernapasan. Penyakit membran hialin pada bayi baru lahir telah terbukti sebagai akibat insufisiensi pembentuka surfaktan, sehingga bayi menderita kesuliatan dalam mengembangkan alveoli.

Untung, sintesis surfaktan dapat dirangsang sehingga sindroma bahaya pernapasan (respiratory distress syndrome) biasanya menggambarkan kesukaran manajemen yang singkat. Selain sifat aktif permukaannya, surfaktan mempermudah transport gas antara fase udara dan cair. Surfaktan juga mempunyai efek bakterisidal yang membantu membuang bakteri yang berpotensial berbahaya bagi alveoli. Lapisan surfaktan tidak statis tetapi sca konstan mengalami turnover. Lipoprotein dengan lambat dibuang dari permukaan oleh vesilkel-vesikel pinositotik sel-sel epitel pipih. Vesikel-vesikel ini mentranpor zat melalui sel dan mengeluarakannya ke dalam interstitial., dimana akhirny dibuang oleh limfe. Oleh karena itu, zat ini mengalami siklus sekresi adan reabsorbsi yang kontinyu. Cairan yang membatasi alveoli juga dibuang melalui bagian konduksi sebagai akibat aktivitas silia. Waktu sekret masuk melalui jalan udara, mereka berikatan dengan mukus bronkus, membentuk cairan bronko-alveolar. Cairan ini membantu pembuangan partikel-partikel dan unsur yang berbahaya dari udara inspirasi. Dalam cairan terdapat beberapa enzim litik (misalnya , lisosim, kolagenase, -glukuronidase) yang mungkin berasal dari makrofag alveolarbdan

Bila terdapat dalam lumen alveoli, makrofag terletak di luar epitel tetapi di dalam lapisan surfaktan. Hubngan okludens sekitar pinggir sel-sel epitel mencegah kebocoran cairan jaringan ke dalam lumen alveoli. Penghalang yang paling tipis antara plasma darah dan udar inspirasi dikurangi sampai epitel alveoli, lamina basalis yang bersatu, dan endotel kapiler. Walaupun rupa-rupanya peka terhadap infeksi bakteri dan virus, peradangan kronik tidak terjadi, karena penghalang terhadap infeksi disediakan oleh makrofag alveoler. Makrofag ini juga dinamakan sel-sel debu, berasal dari monosit yang asalnya dari sumsum tulang . Mereka ditemukan dalam septum alveolaris atau sering terlihat menonjol dari dinding alveoli ke dalam lumen. Walaupun seringkali dianggap bahwa makrofag ini dapat kembali lagi ke interstitial setelah berada dalam lumen alveoli, bukti terakhir berpendapat bahwa makrofag tidak menembus kembali dinding alveoli. Banyak yang makrofag yang mengandung debu dan karbon dalam jaringan penyambung sekitar pembuluh darah utama pada pleura mungkin merupakan sel yang tidak pernah melalui epitel pembatas. Debu yang telah difagositosis dalam sel-sel ini mungkin berjalan dari lumen alveoli ke dalam interstitial oleh aktifitas pinositosis sel-sel epitel pipih. Makrofag alveolar yang mencapai permukaan luar epitel, dalam lapisan surfaktan, dibawa ke pharynk dimana mereka ditelan. Pada payah jantung, paru-paru mengalami kongesti dengan darah dan sel darah merah bergerak masuk ke dalam alveoli (diapedesis), dimana mereka difagositosis oleh makrofag alveoler. Pada kasus ini, makrofag ini dinamakan sel payah jantung dan dan diidentifikasi dengan reaksi histokimia positif untuk pigmen besi (hemosiderin). Selain sel-sel yang telah dibicarakan, septum alveoli juga mengandung fibroblast, mast cells, dan suatu sel kontraktil yang baru saja ditemukan.

Fibroblas interstitial mensintesis serabut-serabut kolagen, elastin, dan zat dasar glikosaminoglikan. Kolagen merupakan 15-20% masa parenkim dan terutama mengandung kolagen tipe I dan III. Serabut tipe III mungkin berhubungan dengan serabut retikuler alveoli, sedangkan kolagen tipe I mungkin terkonsentrasi dalam dinding bagian konduksi dan dalam pleura. Proliferasi kolagen paru-paru sering terjadi, dan lebih dari 100 penyakit diketahui dikaitkan dengan fibrosis paru-paru. Sel-sel kontraktil dalam septum ditemukan terikat pada permukan basal epitel alveoli dan tidak pada sel endotel. Sel-sel ini, yang bereaksi dengan antiaktin dan antimiosin, berkerut dan mengurangi volume lumen alveoli. In vitro, telah terbukti bahwa jaringan parenkim paru-paru akan berkerut bila terkena agen farmakologi seperti epinefrin dan histamin. Septum interalveolaris, mungkin mengandung satu pori atau lebih, bergaris tengah 10-15 µm, menghubungkan alveoli yang berdekatan. Mereka dapat membuat tekanan dalam alveoli seimbang atau memungkinkan sirkulasi kolateral udara bila bronkiolus tersumbat. Pori ini disebut dengan alveolar. Telah terbukti bahwa inhalasi NO2 mengakibatkan destruksi sebagian besar sel-sel pembatas alveoli ( tipe I dan tipe II ).

Kerja senyawa ini atau zat-zat toksik lainnya dengan efek yang sama diikuti oleh peningkatan drastis aktivitas mitosis sel-sel sisanya, menimbulkan banyak sel bertipe II. Pada langkah kedua regenerasi sel pembatas alveoli, sebagian besar sel-sel tipe II diubah menjadi sel-sel tipe I, dan sel pembatas alveoli kembali ke bentuk yang normal. Kecepatan turnover normal sel tipe II diperkirakan 1% per hari, mempertahankan pembaharuan yang kontinyu dari tipenya sendiri dan juga sel tipe I. f) Pembuluh Darah Paru-Paru Sirkulasi pada paru-paru terdiri atas pembuluh yang memberi nutrisi dan pembuluh fungsional. Sirkulasi fungsional diwakili oleh arteria pulmonalis dan vena pulmonalis. Areteria pulmonalis sifatnya elastis dan mengandung darah vena yang harus di oksigenisasi dalam alveoli paru-paru. Dalam paru-paru, pembuluh ini bercabang-cabang, menyertai percabangan bronkus. Cabang-cabangnya dikelilingi oleh adventisia bronkus dan bronkiolus. Pada tingkat duktus alveolaris, cabang-cabang arteri ini membentuk jaringan kapiler yang berhubungan erat dengan epitel alveoli. Paru-paru mempunyai jaringan kapiler yang sangat halus dan yang perkembangannya sangat baik dalam tubuh. Kapiler-kapiler terdapat dalam semua alveoli, termasuk alveoli yang terdapat pada bronkiolus respiratorius.

Venula-venula yang berasal dari jaringan kapiler, pada parenkim hanya satu. Mereka disokong oleh jaringan penyambung tipis yang meliputi dan masuk septa interlobularis. Setelah vena-vena meninggalkan lobulus, mereka mengikuti cabang-cabang bronkus ke hilus, sampai mereka ditemukan satu dalam parenkim paru-paru. Pembuluh nutrisi terdiri atas arteria dan vena bronkialis. Cabang-cabang arteria bronkialis juga mengikuti percabangan bronkus, tetapi hanya sampai bronkiolus respiratorius, dimana ditempat ini mereka beranastomosis dengan arteria pulmonalis. Gambar 6. Pembuluh Darah pada Paru-Paru g) Pembuluh Limfe Paru-Paru Pembuluh limfe mengikuti arteria dan vena bronkialis dan vena pulmonalis, mereka juga terdapat dalam septa interlobaris, dan semuanya mengalir ke nodus limfatikus pada daerah hilus. Jaringan limfatik ini dinamakan pembuluh limfe profunda untuk membedakan dengan jaringan limfe superfisial yang terdiri atas pembuluh-pembuluh limfe yang terdapat pada pleura viseralis. Pembuluh-pembuluh limfe pada daerah ini mengalirkan limfe ke hilus. Mereka mengikuti seluruhpanjang pleura atau menembus jaringan paru-paru melalui septa interlobularis. Pada bagian terminal percabangan bronkus dan diluar duktus alveolaris, pembuluh limfe tidak ada.

h) Pleura

Pleura adalah membran serosa yang meliputi paru-paru. Ia terdiri atas dua lapisan, yaitu parietal dan viseral, yang bersambungan pada daerah hilus. Kedua membran diliputi oleh sel-sel mesotel yang terletak pada lapisan jaringan penyambung halus yang mengandung serabut kolagen dan elastin. Serabut-serabut elastin pleura viseralis bersambungan dengan serabut-serabut yang terdapat pada parenkim paru-paru. Oleh karena itu, kedua lapisan tersebut membatasai rongga yang semata-mata dibatasai oleh sel gepeng mesotel. Dalam keadaan normal, rongga pleura ini hanya mengandung selaput cairan yang bekerja sebagai agen pelumas, memungkinkan pergeseran halus permukaan satu dengan yang lainnya selama pergerakan respirasai. Pada keadaan patologis tertentu, rongga pleura dapat berubah menjadi rongga sebenarnya, mengandung cairan atau udara pada bagian dalamnya. Dinding rongga pleura, seperti semua rongga serosa (periotenum dan perikardium), sangat permeabel terhadap air dan zat lain. Jadi, penimbunan cairan pada rongga ini sering terjadi pada keadaan-keadaan patologis. Cairan ini berasal dari plasma darah dengan cara eksudasi. Sebaliknya, pada keadaan tertentu, cairan atau gas yang terdapat dalam rongga pleura dengan cepat dapat direabsorbsi.

PERGERAKAN PERNAFASAN

Selama inhalasi, kontraksi intercostales mengangkat iga-iga dan kontraksi diafragma merendahkan dasar rongga toraks, menambah garis tengahnya dan mengakibatkan pengembangan paru-paru. Waktu inhalasi garis tengah dan panjang bronkus dan bronkiolus bertambah. Bagian respirasi juga membesar, terutama sebagai akibat pengembangan duktus alveolaris, alveoli hanya membesar sedikit. Serabut-serabut elastin parenkim paru-paru direnggangkan oleh pengembangan, sehingga selama ekspirasi yang disebabkan oleh relaksasi otot, retraksi paru-paru berlangsung pasif, terutama disebabkan serabut-serabut elastis yang berada dalam keadaan teregang. Gambar 7. Bagian dari Paru-Paru Keterangan : Trachea 2:Pulmonary artery 3:Pulmonary vein 4:Alveolar duct 5:Alveoli 6:Cardiac notch 7:Bronchioles 8:Tertiary bronchi 9:Secondary bronchi 10:Primary bronchi 11:Larynx

2.3 Sistem Respirasi pada Pisces dan Tetrapoda

Alat respirasi pada hewan bervariasi antara hewan yang satu dengan hewan yang lain, ada yang berupa paru-paru, insang, kulit, trakea, dan paruparu buku, bahkan ada beberapa organisme yang belum mempunyai alat khusus sehingga oksigen berdifusi langsung dari lingkungan ke dalam tubuh, contohnya pada hewan bersel satu, porifera, dan coelenterata. Pada ketiga hewan ini oksigen berdifusi dari lingkungan melalui rongga tubuh. Pada hewan tingkat tinggi, terjadi variasi alat pernafasan sesuai dengan tempat hidupnya.

a) Sistem Pernafasan pada Pisces

Ikan hidup berada di lingkungan perairan yang memiliki konsentrasi oksigen yang terlarut rendah yaitu sekitar 5 ml/L pada suhu 20 0 C (Tenzer 1993:94). alat pernafasan yang cocok bagi ikan adalah insang yang sangat efisien untuk mengekstraksi oksigen yang terlarut dalam air. Insang berbentuk lembaran-lembaran tipis berwarna merah muda dan selalu lembap. Setiap insang terdiri dari sepasang filamen dan tiap filamen mengandung banyak lapisan tipis yang disebut dengan lamela. Insang ikan merupakan struktur yang mengandung banyak pembuluh darah terutama pada filamen yang memiliki banyak kapiler sehingga memungkinkan O2 berdifusi masuk dan CO2 berdifusi keluar. Gambar 8. Insang Ikan Insang pada ikan dibedakan menjadi dua macam yaitu insang dengan tutup insang (operkulum) dan insang tanpa operkulum. Insang dengan operkulum dimiliki oleh ikan bertulang sejati sedangkan insang tanpa operkulum dimiliki oleh ikan bertulang rawan. Ikan bertulang sejati umumnya memiliki empat pasang insang pada masing-masing sisi faring dan terlindungi oleh operkulum. Masing-masing insang terdirri dari sebuah lengkung insang (arkus brankhialis)dan tersusun atas tulang rawan.

Sisi dalam lengkung terdapat rigi-rigi insang yang fungsinya sebagai penyaring air pernafasan. Lengkung insang dilekati setangkup filamen insang yang berbentuk seperti buku pada sisi lateralnya. Pada filamennya, lamela mengandung epitel pipih dan kapiler darah yang merupakan percabangan dari arteri brankhialis baik afferen maupun yang efferen yang arah aliran darahnya berlawanan dengan arah aliran air yang melintasi insang. Mekanisme pernafasan pada ikan melalui dua tahap yaitu tahap inspirasi dan ekspirasi. Fase inspirasi, O2 dari air masuk ke dalam insang melalui mulut. Gerakan operkulum membantu memperbesar rongga mulut, pada ikan yang tidak memiliki operkulum cara memperbesar mulut adalah dengan menurunkan dan menaikkan dasar mulut. Kemudian O2 diikat oleh kapiler darah untuk dibawa ke jaringan-jaringan yang membutuhkan. Sebaliknya pada fase ekspirasi, CO2 yang dibawa oleh darah dari jaringan akan bermuara ke insang dan dari insang diekskresikan keluar tubuh. Pada beberapa ikan yang hidup di tempat-tempat dengan sedikit air, ikan tersebut memiliki organ bantu pernafasan seperti gelembung renang yang bisa menggantikan insang sebagai organ pernafasan utama. Gelembung renang (pneumatosis) pada ikan adalah sebuah gelembung yang berselaput tipis dan terletak diantara rongga perut dan kolumna vertebralis.

Struktur ini terjadi dari penonjolan dinding dorsal faring. Gelembung renang memiliki saluran penghubung dengan esofagus yang disebut dengan fisostomi, sedangkan gelembung renang yang tidak dilengkapi dengan saluran penghubung disebut dengan fisoklisti. Gelembung renang berisi campuran gas oksigen, nitrogen dan karbondioksida yang masuk dan keluar melalui saluran penghubung dengan esofagus (duktus pneumatikus). Fungsi utama dari gelembung renang adalah sebagai alat untuk dapat naik turun di dalam air. Ikan Dipnoi memiliki paru-paru yang sebenarnya. Berbeda dengan gelembung renang, paru-paru tersebut merupakan penonjolan dinding ventral faring. Meskipun paru-paru ini masih primitif, namun menjadi pelengkap pernafasan ikan selain insang. Bahkan ikan Dipnoi dapat bertahan hidup di luar air dalam waktu yang panjang. Paru-paru yang dimiliki menjadi alat atau organ pernapasan yang utama. Struktur paru-paru Dipnoi masih sangat sederhana, dindingnya licin, berotot lurik dan mengandung anyaman pembuluh darah dan memiliki saluran penghubung dengan faring untuk keluar masuknya udara pernafasan.

b) Sistem Pernafasan pada Tetrapoda

Tetrapoda umumnya hidup di darat. Lingkungan darat (udara) sangat berbeda dengan lingkungan perairan, dan ini menyebabkan hewan-hewan darat memiliki sistem pernapasan yang berbeda dengan hewan-hewan yang hidup di perairan. Udara mengandung lebih banya oksigen daripada dalan air. Konsentrasi oksigen di udar kurang lebih 21% (210 ml O2/l udara). Udar bersifat lebih longgar daripada air sehingga oksigen dapat berdifusi secra lebih cepat . Insang tidak sesuai bagi kehidupan tetrapoda di darat (udara), karena itu golongan hewan tersebut memiliki paru-paru sebagai organ pernapasan utama. Gas-gas pernapasan dapat keluar masuk paru-paru melalui saluran pernapasan yang terdiri dari rongga hidung, faring, laring, trakhea, bronkhus dan paru-paru (pulmo).

• Sistem Respirasi Reptil

Secara umum reptilia bernapas menggunakan paru-paru. Tetapi pada beberapa reptilia, pengambilan oksigen dibantu oleh lapisan kulit disekitar kloaka. Pada reptilia umumnya udara luar masuk melalui lubang hidung, trakea, bronkus, dan akhirnya ke paru-paru. Lubang hidung terdapat di ujung kepala atau moncong. Udara keluar dan masuk ke dalam paru-paru karena gerakan tulang rusuk. Sistem pernafasan pada reptilia lebih maju dari Amphibi. Dinding laring dibentuk oleh tulang rawan kriterokoidea dan tulang rawan krikodea. Trakhea dan bronkhus berbentuk panjang dan dibentuk oleh cincin-cincin tulang rawan. Tempat percabangan trakhea menjadi bronkhus disebut bifurkatio trakhea. Bronkhus masuk ke dalam paru-paru dan tidak bercabang-cabang lagi. Paru-paru reptilia berukuran relatif besar, berjumlah sepasang. Struktur dalamnya berpetak-petak seperti rumah lebah, biasanya bagian anterior lebih banyak berpetak daripada bagian posterior.

• Sistem Respirasi Amphibi

Pernapasan pada amphibia terdiri dari pernapasan kulit dan pernapasan paru-paru. Kecuali pada fase berudu, berudu bernafas dengan insang karena hidupnya di air. Pernapasan Kulit Kulit amphibia yang sangat tipis(setebal 5-8 sel), banyak mengandung kelenjar mukosa sehingga selalu basah dan kaya dengan kapiler darah yang merupakan lanjutan dari arteria kutanae. Pernapasan kulit terjadi baik di darat maupun di dalam air. Oksigen yang masuk lewat kulit akan melewati vena kulit (vena kutanea) kemudian dibawa ke jantung untuk diedarkan ke seluruh tubuh. Sebaliknya karbon dioksida dari jaringan akan di bawa ke jantung, dari jantung dipompa ke kulit dan paru-paru lewat arteri kulit paru-paru (arteri pulmo kutanea). Dengan demikian pertukaran oksigen dan karbon dioksida dapat terjadi di kulit. Pernapasan paru-paru Dalam paru-paru terjadi mekanisme inspirasi dan ekspirasi yang keduanya terjadi saat mulut tertutup. Fase inspirasi adalah saat udara (kaya oksigen) yang masuk lewat selaput rongga mulut dan kulit berdifusi pada gelembung-gelembung di paru-paru. Dalam udara pernapasan pada amphibia adalah sebagai berikut: Tulang hidung luar rongga hidung lubang hidung dalam rongga mulut laring Trakhea bronkhus paru-paru (pulmo).

• Sistem Respirasi Aves

Bangsa burung mempunyai system pernafasan paru-paru yang unik, yaitu pernafasan paru-paru yang diperlengkapi dengan system kantong-kantong udara. Sepasang paru-parunya relative kecil, hanya dapat mengembang sedikit, dan dibungkus oleh selaput yang disebut pleura. Selama inspirasi (pemasukan udara), relaksasi otot-otot toraks dan abdomen memperluas rongga toraks dan abdomen; dan kontraksi otot-otot tersebut mengeluarkan udara pernafasan selama ekspirasi. Udara masuk melalui lubang hidung luar dan memasuki faring melalui lubang hidung dalam. Udara melewati glottis. Suatu ruangan sempit yang dibatasi oleh laring, menuju trachea. Trakhea merupakan suatu pipa yang tersusun oleh cincin-cincin tulang rawan. Trachea bercabang menjadi dua bronchus primer, tempat percabangan disebut biturkatio trachea. Dari bronchus primer tumbuh 4 bronkhus sekunder atau ventrobronkhi yang memasuki paru-paru di bagian ventral agak ke anterior, berlanjut ke bagian ventromedial paru-paru. Bronkhus primer kemudian menumbuhkan 7-10 dorsobronkhi di atas permukaan dorsolateral paru-paru. Ventrobronkhi dan dorsobronkhi dihubungkan oleh ratusan parabronkhi yang berdiameter sekitar 1 mm. Beribu-ribu kapiler udara bercabang tegak lurus dari setiapparabronkhus dan di dalam ruangan inilah terjadi pertukaran udara pernafasan. Kantung udara (sakus pneumatikus) adalah suatu kantong berdinding tipis yang merupakan penonjolan dariparu-paru. Umunya burung mempunyai lima pasang kantong udara, yaitu (1) Kantong servikal, (2) kantong interklavikula, (3) kantong torasika anterior, (4) kantong torasika posterior dan (5) kantong udara abdominal. Bronkhus primer berakhir pada kantong udara abdominal. Kantong-kantong torasika posterior berhubungan dengan bronkhus primer melalui laterobronkhi, pasangan kantong torasika anterior berhubungan dengan ventrobronkhus yang ketiga, sedangkan kantong-kantong servikal berhubungan dengan ventrobronkhus pertama. Di samping berfungsi untuk membantu pernafasan (terutama pada waktu terbang), kantong-kantong udara juga berfungsi untuk mencegah hilangnya panas badan yang berlebihan, mengatur jenis badan dan membantumemperkeras suara. Burung mempunyai siring (kotak suara) yang unik,terdapat pada bifurkatic trachea. Siring tersusun dari beberapa cincin tulang rawan trakhea yang paling kaudaldan cincin tulang rawan bronchus yang paling cranial.

• Sistem Respirasi Mammalia

Pada dasarnya sistem respirasi pada mamalia sama dengan respirasi secara umum. Organ-organ respirasinya pun juga hampir sama. Memiliki bagian saluran pernapasan: rongga hidung, faring, laring, trakhea, bronkus, dan bronkiolus. Bagian pernapasan: bronkioli respiratori, dukti alveoli, dan alveoli. Organ perapasan utama adalah paru-paru. Paru-paru mamalia berongga-rongga dan umumnya terbagi menjadi lobus-lobus. Kebanyakan dua lobus sebelah kiri dan tiga lobus sebelah kanan. Ada juga mamalia yang paru-parunya yang tidak terbagi dalam lobus-lobus, misalnya pada ikan paus, duyung, gajah, kuda, dan beberapa kelelawar. Pada monotremata dan tikus, hanya paru-paru kanan yang terbagi dalam lobus-lobus. Sebelah luar paru-paru dilapisi oleh selaput pleura. Rongga hidung dipisahkan oleh suatu sekat yang disebut septum basal, menjadi bagian kiri dan kanan. Dengan udara luar dihubungkan oleh lubang hidung luar (nares eksternal), dengan faring dihubungkan oleh lubang hidung dalam (nares internal/khoane). Faring merupakan persimpangan antara saluran napas dan salura makanan. Lobus merupakan suatu rongga yang terletak di belakang faring. Epigatus berfungsi untuk menutupi glotis waktu menelan makanan, agar makanan tidak masuk ke sistem pernapasan. Terdapat pula alat suara (apparatus vokalis) berupa sepasanang pita kecil (ligamen). Trakhea diperkuat oleh cincin tulang rawan hialin dan fibrosa. Bronkus yang dibedakan menjadi dua, yaitu bronkus ekstrapulmonalis dan bronkus intrapulmonalis. Bronkiolus merupakan cabang dari bronkus intrapulmonalis.



skip to main | skip to sidebar

HISTOLOGI

Sabtu, 2009 Januari 10

13. SISTEM RESPIRASI

Dalam melaksanakan proses Metabolisme, oleh hewan dan manusia dibutuhkan oksigen.. System respirasi berfungsi untuk mengambil oksigen dan membuang karbondioksida, yang keduanya diangkut dari dan ke tubuh.

Tractus respiratorius dapat dibagi menjadi:

1. Pars Conductoria
Meliputi saluran yang menghubungkan antara bagian luar tubuh dengan paru-paru untuk menyalurkan udara.
Saluran ini terdiri dari:
- Hidung
- Pharynx
- Larynx
- Trachea
- Bronchus
- Bronchiolus

2. Pars Respiratoria
Merupakan bagian dari paru-paru yang berfungsiuntuk pertukaran gas antara darah dan udara. Bagian ini terdiri dari:
- Saccus alveolaris.
- Alveolus.


HIDUNG

Hidung merupakan organ yang berongga dengan dinding yang tersusun oleh jaringan tulang, cartilage, otot dan jaringan pengikat. Pada kulit yang menutupi bagian luar hidung diketemukan Glandula sebacea dan rambut-rambut halus.
Kulit ini melanjutkan diri melalui nares untuk melapisi vestibulum nasi.
Di daerah vestibulum nasi ini banyak rambut yang bersifat kaku yang berfungsi untuk menghalangi debu dan kotoran yang ikut dihirup. Pada sisa cavum nasi yang lain dilapisi oleh epitel silindris semu berlapis bersilia dengan banyak kelenjar mucosa ( sel piala).
Di indera pembau terdapat epitel khusus , yang pada bagian bawahnya terdapat membrane basalis yang memisahkan epitel dengan jaringan pengikat yang banyak mengandung kelenjar serosa-mukosa.
Di bawah epitel yang menutupi concha nasalis inferior banyak plexus fenosus yang berguna untuk memanasi udara yang lewat.

Organon olfactorius

Merupakan reseptor rangsang bau yang terletak pada ephitelium olfactorius. Epitelnya merupakan epitel silindris semu berlapis dengan 3 macam sel:
Sel penyokong
Sel ini berbentuk langsing, di dalam sitoplasmanya tampak adanya berkas-berkas tonofibril dan jelas tampak terminal bar. Pada permukaannya tampak banyak mikrovili yang panjang yang terpendam dalam lapisan lender. Kompleks golgi yang kecil terdapat pada bagian puncak sel.
Di dalamnya juga terdapat pigmen coklat yang memberi warna pada epitel olfactory tersebut.
Sel Basal
Sel ini berbentuk kerucut rendah dengan tonjolan tersusun selapis dan berinti gelap.
Sel Olfactoori.
Sel ini terdapat diantara sel-sel penyokong sebagai sel syaraf yang berbentuk bipolar. Bagian puncak sel olfactory membulat dan menonjol merupaka dendrite yang meluas sebagai tonjolan silindris pada permukaan epitel. Bagian basal mengecil menjadi lanjutan sel halus yang tidak berselubung myelin.
Bagian yang membulat di permukaan disebut vesicular olfactorius, dari bagian yang menonjol ini timbul tonjolan yang berpangkal pada corpuscullum basale sebagai cilia olfactory yang tidak dapat bergerak. Ujung cilia inilah yang merupakan komponen indra pembau dan dapat menerima rangsang.
Dalam lamina propria terdapat sel-sel pigmen dan sel limfosit. Selain itu, dalam lamina propria terdapat banyak sekali anyaman pembuluh darah.
Di dalam lamina proproia area olfactory terdapat pula kelenjar tubulo-alveolar sebagai Glandula Olfactorius Bowmani, yang berfungsi menghasilkan sekrit yang menjaga agar epitel olfactory tetap basah dan bersih.

Sinus paranasal

Merupakan ruangan yang dibatasi tulang dan berhubungan dengan cavum nasi. Sinus paranasal ini kita kenal: sinus paranasal, sinus ethmoidale, sinus maxilla dan sinus spenoidalis yang terdapat dalam tulang-tulang yang bersangkutan.

LARYNX

Larynx berbentuk sebagai pipa yang irregular dengan dinding yang terdiri atas cartilage hyaline, cartilage elastis, jaringan pengikat dan otot bercorak. Larynx menghubungkan antara pharynx dengan trachea.
Fungsinya adaalah menyokong, mencegah makanan/minuman untuk masuk ke dalam trachea.
Rangka larynx terdiri dari beberapa potong kartilago:
Cartilage thyrooidea, cartilage cricoidea dan epiglotis yang terdapat tunggal
Cartilage arythenoidea, Cartilago corniculata, dan cartilage cuneiformis yang terdapat sepasang.
Otot bercorak dari larynx dapat dibagi menjadi :
Otot ekstrinsik, yang berfungsi untuk menopang dan menghubungkan sekitarnya. Kontraksinya terjadi pada proses digulatio(menelan).
Otot instrinsik, yang berfungsi menhubungkan masing-masing cartilage larynx . kontraksinya berpereran dalam proses bersuara.
Epiglottis.
Merupakan cartilage elastis yang berbentuk seperti sendok pipih. Permukaan depan, bagian atas permukaan belakang epiglotia (plica aryepiglotica) dan plica vokalis dilapisi oleh epitel gepeng berlapis.
Plica vokalis merupakan lipatan membrane mukosa yang didalamnya mengandung ligamentum vokalis yang merupakan pengikat elastis. Epitel yang menutupi merupakan epitel gepeng berlapis.

TRACHEA

Merupakan lanjutan dari larynx yang lebarnya 2-3.5 cm dan panjangnya sekitar 11 cm. trachea berakhir dengan cabang dua yang disebut sebagai bronchus.
Epitel yang melapisi sebelah dalam ialah epitel silindris semu berlapis bercilia dan bertumpu pada membrane basalis yang tebal. Di antara sel-sel tersebar sel-sel piala. Dibawah membrane basalis terdapat lamina propria yang banyak mengandung serabut elastis. Di lapisan dalam lamina propria serabut elastis membentuk anyaman padat sebagai suatu lamina elastica, maka jaringan pengikat dibawahnya kadang-kadang disebut tunica submukosa.
Di dalam tunica submukosa inilah terdapat kelenjar-kelenjar kecil seperti pada dinding larynx yang bermuara pada permukaan epitel.
Yang merupakan ciri khas dari trachea adalah adnya kerangka cincin-cincin cartilago hyaline yang berbentuk huruf C sebanyak 16-20 buah yang berderet mengelilingi lumen dengan bagian yang terbuka di bagian belakang( pars cartilaginea).
Masing-masing cincin dibungkus oleh serabut fibro elastis.
Bagian belakan tidak memiliki cincin cartilage (pars membranacea) diisi oleh serabut-serabut otot polos yang sebagian berjalan melintang dan berhubungan dengan jaringan fibro elastis disekitarnya.


BRONCHUS DAN CABANG-CABANGNYA

Trachea bercabang menjadi 2 bronchus primaries yang masuk ke jaringan paru-paru melalui hilus pulmonalis dengan arah ke bawah dan lateral. Bronchus yang sebelah kana bercabang menjadi 3 dan yang sebelah kiri becabang menjadi 2, dimana setiap cabang tersebut merupakan percabangan dari bronchus primaries.
Lamina propria terdiri dari jaringan pengikat yang banyak mengandung serabut elastis dan serabut kolagen dan retikuler serta beberapa limfosit. Di bawah membrane mocosa terdapat stratum musculare yang tidak merupakan lapisan tertutup.
Banyaknya serabut elastis berhubungan erat dengan sel-sel otot polos dan serabut elastis ini sangat penting dalam proses respirasi. Di dalam anyaman muskuloelastis ini terdapat banyak jalinan pembuluh darah kecil.
Perbedaan struktur antara trachea serta bronchus extrapulmonalis serta intrapulmonalis.
Bentuk cincin cartilage.
Susunan serabut otot pada trachea hanya dibagian dorsal sedangkan pada bronchus terdapat disekeliling dinding.
Kontraksi lapisan otot ini akan menimbulkan lipatan memanjang pada membrane mukosa.
Suatu lapisan anyaman elastis yang membatasi membrane mukosa seperti pada trachea tidak ada, tetapi terdapat serabut-serabut elastis yang berjalan sejajar sepanjang bronchus dengan percabangannya.

Perbedaan Bronchus dan Bronchiolus.

Dengan bercabangnya bronchus, maka kalibernya akan semakin mengecil, yang menyebabkan gambaran stukturnya akan semakin berbeda karena lempeng-lempeng cartilage yang makin berkurang.
Kalau struktur pulmo disamakan seperti kelenjar, maka bronchus merupakan ‘ductus extraloburalis’, sebab terdapat diluar lobuli.
Cabang bronchus yang memasuki lobulus pada puncaknya disebut ‘bronchiolus’ yang sesuai dengan ‘ductus intralobularis’ pada kelenjar.
Biasanya dinding brochiolus berdiameter lebih kecil dari 1mm dengan epitel silindris selapis bercilia dan tanpa cartilago.

PULMO

Paru-paru pada manusia terdapat sepasang yang menempati sebagian besar dalam cavum thoracis. Kedua paru-paru dibungkus oleh pleura yang terdiri atas 2 lapisan yang saling berhubungan sebagai pleura visceralis dan pleura parietalis.

Stuktur Pulmo
Unit fungsional dalam paru-paru disebut lobulus primerius yang meliputi semua struktur mulai bronchiolus terminalis, bronchiolus respiratorius, ductus alveolaris, atrium, saccus alveolaris, dan alveoli bersama-sama dengan pembuluh darah, limfe, serabut syaraf, dan jarinmgan pengikat.
Lobulus di daerah perifer paru-paruberbentuk pyramidal atau kerucut didasar perifer, sedangkan untuk mengisi celah-celah diantaranya terdapat lobuli berbentuk tidak teratur dengan dasar menuju ke sentral.
Cabang terakhir bronchiolus dalamlobulus biasanya disebut bronchiolus terminalis. Kesatuan paru-paru yang diurus oleh bronchiolus terminalis disebut acinus.

Bronchiolus Respiratorius
Memiliki diameter sekitar 0.5mm. saluran ini mula-mula dibatasi oleh epitel silindris selapis bercilia tanpa sel piala, kemudian epitelnya berganti dengan epitel kuboid selapis tanpa cilia.
Di bawah sel epitel terdapat jaringan ikat kolagen yang berisi anyaman sel-sel otot polos dan serbut elastis. Dalam dindingnya sudah tidak terdapat lagi cartilago.
Pada dinding bronchiolus respiratorius tidak ditemukan kelenjar. Disana-sini terdapat penonjolan dinding sebagai alveolus dengan sebagian epitelnya melanjutkan diri. Karena adanya alveoli pada dinding bronchiolus inilah maka saluran tersebut dinamakan bronchiolus respiratorius.


Ductus Alveolaris
Bronchiolus respiratorius bercabang menjadi 2-11 saluran yang disebut ductus alveolaris. Saluran ini dikelilingi oleh alveoli sekitarnya.
Saluran ini tampak seperti pipa kecil yang panjang dan bercabang-cabang dengan dinding yang terputus-putus karena penonjolan sepanjang dindingnya sebagai saccus alveolaris. Dinding ductus alveolaris diperkuat dengan adanya serabut kolagen elastis dan otot polos sehingga merupakan penebalan muara saccus alveolaris.

Saccus alveolaris dan Alveolus
Ruangan yang berada diantara ductus alveolaris dan saccus alveolaris dinamakan atrium. Alveolus merupakan gelembung berbentuk polyhedral yang berdinding tipis.
Yang menarik, dindingnya penuh dengan anyaman kapiler darah yang saling beranastomose.
Kadang ditemukan lubang yang disebut porus alveolaris dan terdapat sinus pemisah(septa) antara 2 alveoli. Fungsi lubang tersebut belum jelas, namun dapat diduga untuk mengalirkan udara apabila terjadi sumbatan pada salah satu bronchus.

Pelapis Alveolaris
Epitel alveolus dengan endotil kapiler darah dipisahkan oleh lamina basalis.
Pada dinding alveolus dibedakan atas 2 macam sel:
sel epitel gepeng ( squamous pulmonary epitheal atau sel alveolar kecil atau pneumosit tipeI).
sel kuboid yang disebut sel septal atau alveolar besar atau pneumosit tipe II.

Sel alveolar kecil membatasi alveolus secara kontinyu, kadang diselingi oleh alveolus yang besar. Inti sel alveolus kecil ini gepeng. Bentuk dan ketebalan sel alveolar kecil tergantung dari derajat perkemangan alveolus dan tegangan sekat antara alveoli.
Sel alveolar besar ialah sel yang tampak sebagai dinding alveolus pada pengamatan dengan mikroskop cahaya. Sel ini terletak lebar ke dalam daripada pneumosit typeI.
Kompleks golginya sangat besar disertai granular endoplasma reticulu m dengan ribosom bebas.
Kadang-kadang tampak bangunan ini terdapat dipermukaan sel seperti gambaran sekresi sel kelenjar. Diduga benda-benda ini merupakan cadangan zat yang berguna untuk menurunkan tegangan permukaan dan mempertahankan bentuk dan besar alveolus.
Secret tersebut dinamakan ‘Surfactant’
Udara di dalam alveolus dan darah dalam kapiler dipisahkan oleh:
Sitoplasma sel epitel alveolus.
Membrana basalis epitel alveolus.
Membrane basalis yang meliputi endotel kapiler darah
Sitoplasma endotel kapiler darah.

Fagosit Alveolar, Sel Debu (Dust cell)
Hampir pada setiap sediaan paru-paru ditemukan fagosit bebas. Karena mereka mengandung debu maka disebut sel debu. Pada beberapa penyakit jantung sel-sel tersebut mengandung butir-butir hemosiderin hasil fagositosis pigmen eritrosit.

Pembuluh Darah

Sebagian besar pulmo menerima darah dari arteri pulmonalis yang bertripe elastis. Cabang arteri ini masuk melalui hilus pulmonalis dan bercabang-cabang mengikuti percabangan bronchus sejauh bronchioli respiratorius.
Dari sini arteri tersebut memberi percabangan menuju ke ductus alveolaris, dan memberi anyaman kapiler di sekeliling alveolus. Venula menampung darah dari anyaman kapiler di pleura dan dinding penyekak alveolus. Vena yang menampung darah dari venula tidak selalu seiring dengan arterinya, tetapi melalui jaringan pengikat di antara lobulus dan segmen.
Pulmonalis dan vena pulmonalis terutama untuk pertukaran gas dalam alveolus. Disamping itu terdapat arteri bronchialis yang lebih kecil, sebagai cabang serta mengikuti bronchus dengan cabang-cabangnya. Arteri ini diperlukan untuk nutrisi dinding bronchus termasuk kelenjar dan jaringan pengikat sampai di bawah pleura.
Darah akan kembali sebagian besar melalui vena pulmonalis disamping vena bronchialis. Terdapat anastomosis dengan kapiler dari arteri pulmonalis.

Pembuluh Limfe

Terdapat 2 kelompok besar, sebagian dalam pleura dan sebagian dalam jaringan paru-paru. Terdapat hubungan antara 2 kelompok tersebut dan keduanya mengalirkan limfa ke arah nodus limfatikus yang terdapat di hilus.
Pembuluh limfe ada yang mengikuti jaringan pengikat septa interlobularis dan ada pula yang mengikuti percabangan bronchus untuk mencapai hilus.

Pleura

Seperti juga jantung paru-paru terdapat didalam sebuah kantong yang berdinding rangkap, masing-masing disebut pleura visceralis dan pleura parietalis. Kedua pleura ini berhubungan didaerah hilus. Sebelah dalam dilapisi oleh mesotil. Pleura tersebut terdiri atas jaringan pengikat yang banyak mengandung serabut kolagen, elastis, fibroblas dan makrofag. Di dalamnya banyak terdapat anyaman kapiler darah dan pembuluh limfe.

HISTOGENESIS

Perkembangan pulmo terdiri dari 3 fase:

Fase glanduler(12-16 minggu)
Mula-mula sebagai tonjolan yang akan menjadi trachea yang kemudian bercabang menjadi 2 sebagai calon bronchus. Tonjolan ini dengan cepat tumbuh memanjang dan mencapai kelompok sel-sel mesenkhim sehingga akhirnya menyerupai kelenjar. Pars conductoria tractus respiratorius telah dilengkapi selama kehidupan intrauterin bersama pula dengan sistem pembuluh darah.

Fase kanalikuler(bulan ke-4-7)
Terjadi pertumbuhan cepat sel-sel mesenkim di sekitar percabangan bronchus. Sel-sel tersebut dan serabut jaringan pengikat sangat menonjol disamping anyaman kapiler darah. Pada tingkat ini belum tumbuh alveolus. Kelenjar-kelenjar timbul sebagai tonjolan dinding bronchus.

Fase alveolar(6,5 bulan sampai lahir)
Paru-paru kehilangan bentuk kelenjarnya karena sekarang banyak sekali pembuluh darah. Ujung-ujung bronchus yang mengembang akan tumbuh bercabang-cabang hingga terbentuk alveoli.
Epitel alveoli menipis sehingga terjadi hubungan yang erat dengan kapiler darah. Sesudah lahir masih terjadi perkembangan pars respiratoria untuk penyempurnaan yang meliputi bronchiolus respiratorius sampai alveoli.

REGENERASI PARU-PARU

Paru-paru mudah sekali terserang penyakit infeksi sehingga menimbulkan kerusakan jaringannya. Dalm proses penyembuhan bagian-bagian yang rusak akan digantikan oleh jaringan pengikat. Jaringan paru-paru sendiri tidak mrngalami regenerasi.

DRG. TADEUS

Tidak ada komentar:

Posting Komentar